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Abstract. In this paper we describe a new method for automatically
estimating where a person is looking in images where the head is typically
in the range 20 to 40 pixels high. We use a feature vector based on skin
detection to estimate the orientation of the head, which is discretised into
8 different orientations, relative to the camera. A fast sampling method
returns a distribution over previously-seen head-poses. The overall body
pose relative to the camera frame is approximated using the velocity of
the body, obtained via automatically-initiated colour-based tracking in
the image sequence. We show that, by combining direction and head-pose
information gaze is determined more robustly than using each feature
alone. We demonstrate this technique on surveillance and sports footage.

1 Introduction

In applications where human activity is under observation, be that CCTV surveil-
lance or sports footage, knowledge about where a person is looking (i.e. their
gaze) provides observers with important clues which enable accurate explanation
of the scene activity. It is possible, for example, for a human readily to distin-
guish between two people walking side-by-side but who are not “together” and
those who are acting as a pair. Such a distinction is possible when there is reg-
ular eye-contact or head-turning in the direction of the other person. In soccer
head position is a guide to where the ball will be passed next i.e. an indicator
of intention, which is essential for causal reasoning. In this paper we present a
new method for automatically inferring gaze direction in images where any one
person represents only a small proportion (the head ranges from 20 t0 40 pixels
high) of the frame.

The first component of our system is a descriptor based on skin colour. This
descriptor is extracted for each head in a large training database and labelled
with one of 8 distinct head poses. This labelled database can be queried to find
either a nearest-neighbour match for a previously unseen descriptor or (as we
discuss later) is non-parametrically sampled to provide an approximation to a
distribution over possible head poses.

Recognising that general body direction plays an important rôle in deter-
mining where a person can look (due to anatomical limitations), we combine
direction and head pose using Bayes’ rule to obtain the joint distribution over



head pose and direction, resulting in 64 possible gazes (since head pose and
direction are discretised into 8 sectors each, shown in figure 1).

The paper is organised as follows. Firstly we highlight relevant work in this,
and associated, area(s). We then describe how head-pose is estimated in section
2. In section 3 we provide motivation for a Bayesian fusion method by showing
intermediate results where the best head-pose match is chosen and, by contrast,
where direction alone is used. Section 3 also discusses how we fuse the relevant
information we have at our disposal robustly to compute a distribution over
possible gazes, rejecting non-physical gazes and reliably detecting potentially
significant interactions. Throughout the paper we test and evaluate on a number
of datasets and additionally summarise comprehensive results in section 4. We
conclude in section 5 and discuss potential future work in section 6.

1.1 Previous work

Determining gaze in surveillance images is a challenging problem that has re-
ceived little or no attention to date, though preliminary work in this specific
problem domain was reported in [23].

Most closely related to our work is that of Efros et al [6] for recognition
of human action at a distance. That work showed how to distinguish between
human activities such as walking, running etc. by comparing gross properties of
motion using a descriptor derived from frame-to-frame optic-flow and performing
an exhaustive search over extensive exemplar data. Head pose is not discussed
in [6] but the use of a simple descriptor invariant to lighting and clothing is of
direct relevance to head pose estimation and has directly inspired aspects of our
approach.

Dee and Hogg [5] developed a system for detecting unusual activity which
involves inferring which regions of the scene are visible to an agent within the
scene. A Markov Chain with penalties associated with state transitions is used
to return a score for observed trajectories which essentially encodes how directly
a person made his/her way towards predefined goals, typically scene exits. In
their work, gaze inference is vital, but is inferred from trajectory information
alone which can lead to significant interactions being overlooked. In fact, many
systems have been created to aid urban surveillance, most based on the notion
of trajectories alone. For example [9] reports an entirely automated system for
visual surveillance and monitoring of an urban site using agent trajectories.
The same is true in the work of Buxton (who has been prominent in the use of
Bayesian networks for visual surveillance) [2], Morellas et al [18] and Makris [15].
Johnson and Hogg’s work [12] is another example where trajectory information
is only considered.

In contrast, there has been considerable effort to extract gaze from relatively
high-resolution faces, motivated by the press for better Human/Computer In-
terfaces. The technical aspects of this work have often focused on detecting the
eyeball primarily. Matsumoto [16] computes 3-D head pose from 2-D features
and stereo tracking. Perez et al. [21] focus exclusively on the tracking of the



eyeball and determination of its observed radius and orientation for gaze recog-
nition. Kaminski et al. [13] have achieved a very similar goal but using a single
image while retaining a face and eye model. Gee and Cipolla’s [8] gaze determi-
nation method based on the 3D geometric relationship between facial features
was applied to paintings to determine where the subject is looking. Related work
has tackled expression recognition using information measures. Shinohara and
Otsu demonstrated that Fisher Weights can be used to recognise “smiling” in
images.

While this approach is most useful in HCI where the head dominates the
image and the eye orientation is the only cue to intention, it is too fine-grained
for surveillance video where we must usually be content to assume that the
gaze direction is aligned with the head-pose. In typical images of interest in our
application area (low/medium resolution), locating significant features such as
the eyes, irises, corners of the mouth, etc as used in much of the work above is
regularly an impossible task. Furthermore, though standard head/face-detection
techniques [25] work well in medium reolution images, they are much less reli-
able for detecting, say, the back of a head, which still conveys significant gaze
information.

The lowest level of our approach is based on skin detection. Because of signifi-
cant interest in detecting and tracking people in images and video, skin detection
has naturally received much attention in the Computer Vision community [3] [10]
[11]. However skin detection alone is error-prone when the skin region is very
small as a proportion of the image. However, contextual cues such as direction
can help to disambiguate gaze using even a very coarse head-pose estimation. By
combining this information in a principled (i.e. probabilistic, Bayesian) fashion,
gaze estimation at a distance becomes a distinct possibility as we demonstrate
in this paper.

2 Head pose detection

2.1 Head pose feature vector

Although people differ in colour and length of hair and some people may be
wearing hats, beards etc. it is reasonable to assume that the amount of skin that
can be seen, the position of the skin pixels within the frame and the proportion
of skin to non-skin pixels is a relatively invariant cue for a person’s coarse gaze
in a static image. We obtain this descriptor in a robust and automatic fashion
as follows. First, a mean-shift tracker [4] is automatically initialised on the head
by using naive background subtraction to locate people and subsequently mod-
elling the person as distinct “blocks”, the head and torso. Second, we centre the
head within the tracker window at each time step which stabilises the descriptor
ensuring consistent position within the frame for similar descriptors (the head
images are scaled to the same size and, since the mean-shift tracker tracks in
scale-space we have a stable, invariant, descriptor). Third, despite claims in the
literature to the contrary, there is no specific region of colour-space which repre-
sents skin in all sequences and therefore it is necessary to define a skin histogram



Head−pose Descriptor

Input Foreground Skin Pixels Non−skin Pixels

1/4 right

back

1/4 left

side RL side LR

3/4 right

face

3/4 left

Fig. 1. The figure on the left shows the images which result from the mean-shift image
patch tracker (col. 1 ) (with an additional step stabilise the descriptor by centering the
head in the window), subsequent background subtraction (col. 2 ), the weight image
which represents the probability that each pixel in the head is skin (col. 3 ) and non-
skin (col. 4 ) (non-skin is significant as it captures proportion without the need for
scaling). Thie concatenation of skin and non-skin weight vectors is our feature vector
which we use to determine eight distinct head poses which are shown and labelled
on the right. Varying lighting conditions are accounted for by representing the same
head-pose under light from different directions in the training set. The same points on
the “compass” are used as our discretisation of direction i.e. N, NE, E, etc.

for each scenario by hand-selecting a region of one frame in the current sequence
to compute a (normalised) skin-colour histogram in RGB-space. We then com-
pute the weights for every pixel in the stabilised head images which the tracker
automatically produces to indicate how likely it is that it was drawn from this
predefined skin histogram3. Using the knowledge of the background we segment
the foreground out of the tracked images. Every pixel in the segmented head
image is drawn from a specific RGB bin and so is assigned the relevant weight
which can be interpreted as a probability that the pixel is drawn from the skin
model histograms. So for every bin i (typically we use 10 bins) in the predefined,
hand-selected skin-colour histogram q the histogram of the tracked image p is
a weight is computed wi =

√
qi

pi
. Every foreground pixel in the tracked frame

falls into one of the bins according to its RGB value and the normalised weight
associated with that pixel is assigned to compute the overall weight image, as
shown in figure 1. The non-skin pixels are assigned a weigh that the pixel is not
drawn from the skin histogram. This non-skin descriptor is necessary because it
encodes the “proportion” of the head which is skin which is essential as people
vary in size not only in the sense of scale within the but physically between

3 This will be recognised as a similar approximation to the Battacharyya coefficient
as implemented in the meanshift algorithm [4].
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Fig. 2. Automatic location of the head is achieved by segmenting the target using
simple background subtraction (top-left) and morphological operations with a kernel
biased towards the scale of the target to identify objects. The head is taken as the top
1/7th of the entire body (top-right). The head is automatically centred in the bounding
box at each time step to stabilise the tracking and provide an invariant descriptor for
head pose, as shown in the second row.

one another. Each descriptor is scaled to a standard 20 × 20 pixel window to
achieve robust comparison when the head sizes vary. Finally, in order to provide
temporal context to our descriptor of head-pose we concatenate individual de-
scriptors from 5 consecutive frames of tracker data for a particular example and
this defines our instantaneous descriptor of head-pose.

2.2 Training data

We assume that we can distinguish head pose to a resolution of 45 degrees. There
is no obvious benefit to detecting head orientations at a higher degree of accuracy
and it is unlikely that the coarse target images would be amenable in any case.
This means discretising the 360 degrees orientation-space into 8 distinct views as
shown in figure 1. The training data we select is from a surveillance-style camera
position and around 100 examples of each view are selected from across a number
of different sequences and under different lighting conditions (i. e. light from left,
right and above). The head was automatically tracked as described above and
the example sequence labelled accordingly. The weight image for 5 consecutive
frames are then computed and this feature vector stored in our exemplar set.
The same example set is used in all the experiments reported (e.g. there are no
footballers in the training dataset used to compute the gaze estimates presented
in figure 9).

2.3 Matching head poses

The descriptors for each head pose are (20 × 20 × 5 =)2000 element vectors.
With 8 possible orientations and 100 examples of each orientation searching this
dataset rapidly becomes an issue. We elect to structure the database using a
binary-tree in which each node in the tree divides the set of exemplars below



Fig. 3. Detecting head pose in different scenes using the same exemplar set. The main
image shows the frame with the estimated gaze angle superimposed, the pair of images
directly beside each frame shows the input image that the head-pose detector uses
(top) and the best (ML) match in the database with corresponding label (bottom).

the node into roughly equal halves. Such a structure can be searched in roughly
log n time to give an approximate nearest-neighbour result. We do this for two
reasons: first, even for a modest database of 800 examples such as ours it is faster
by a factor of 10; second, we wish to frame the problem of gaze detection in a
probabilistic way and Sidenbladh [24] showed how to formulate a binary tree
(based on the sign of the Principal Components of the data) search in a pseudo-
probabilistic manner. This technique was later applied to probabilistic analysis of
human activity in [22]. We achieve recognition rates of 80% (the correct example
is chosen as the ML model 8/10 queries) using this pseudo-probabilistic method
based on Principal Components with 10 samples. An illustrative example of
such a distribution in this context is shown in figure 4. Results of sampling from
this database for a number of different scenes are shown in figure 3. In order
to display where the person is looking in the images angles are assigned to the
discretised head-poses shown in figure 1 according to the “compass” e.g. N : 0o

etc. The angles are then corrected for the projection of the camera at each time
step (depending on the location of the person on the ground-plane in the image)
as defined in figure 5.

3 Gaze estimation

3.1 Bayesian fusion of head-pose and direction

The naive assumption that direction of motion information is a good guide as
to what a person can see has been used in figure 6. However, it is clear the
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Fig. 4. (Left) The distribution over head-poses resulting from 10 queries of the database
for this input frame is shown in the graph above. The leaf nodes of the database
contain indices into matching frames and the matching frame images and assigned
probabilities of a match are shown below the graph. (Right) Fusing head-pose and
direction estimates improves gaze estimation. Here, the ML match for head pose would
be incorrectly chosen as “back”. The body-direction is identified as “S” which, since
it is not possible to turn the head through 180o relative to the body, this gaze has a
low (predefined) prior and is rejected as the most likely at the fusion stage. The MAP
gaze is identified as “Face” which is a very good approximation to the true gaze.

crucial interaction between the two people is missed. To address this issue we
compute the joint posterior distribution over direction of motion and head pose.
The priors on these are initially uniform for direction of motion, reflecting the
fact that for these purposes there is no preference for any particular direction in
the scene, and for head pose a centred, weighted function that models a strong
preference for looking forwards rather than sideways. The prior on gaze is defined
using a table which lists expected (i.e. physically possible) gazes and unexpected
(i.e. non-physical) gazes.

We define g as the measurement of head-pose, d is the measurement of body
motion direction, G is the true gaze direction and B is the true body direc-
tion, with all quantities referred to the ground centre. We compute the joint
probability of true body pose and true gaze:

P (B,G|d, g) ∝ P (d, g|B,G)P (B,G) (1)

Now given that the measurement of direction d is independent both true and
measured gaze G, g once true body B pose is known, P (d|B,G, g) = P (d|B) and
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Fig. 5. When assigning angles to the matched discretised head-poses one must com-
pensate for the camera projection since “North” (see figure 1) does not in general
correspond to vertical in the image plane. In order to choose the correct frame of refer-
ence we do not perform full camera calibration but compute the projective transform
(H : image→ground-plane) by hand-selecting 4 points in the image. The vertical van-
ishing point (v, left) is computed from 2 lines normal to the ground plane and parallel
in the image. The angle theta between the projection of the optic-rays through the
camera centre (Hv, right) and the image centre (Hc, left) and the point at the feet
of the tracked person ((Hp, right) is the angle which adjusts vertical in the image to
“North” in our ground plane reference frame i. e. cos−1[(Hc×Hv).(Hv ×Hp)].

similarly that the measurement of gaze g is independent of true body pose B
given true gaze G, P (g|B,G) = p(g|G), then we have

P (B,G|d, g) ∝ P (g|G)P (d|B)P (G|B)P (B) (2)

We assume that the measurement errors in gaze and direction are unbiased
and normally distributed around the respective true values

P (g|G) = N (G, σ2
G), P (d|B) = N (B, σ2

B) (3)

(actually, since these are discrete variables we use a discrete approximation).
The joint prior, P (B,G) is factored as above into P (G|B)P (B) where the

first term encodes our knowledge that people tend to look straight ahead (so the
distribution P (G|B) is peaked around B, while P (B) is taken to be uniform,
encoding our belief that all directions of body pose are equally likely, although
this is easily changed: for example in tennis one player is expected to be pre-
dominantly facing the camera).

While for single frame estimation this formulation fuses our measurements
with prior beliefs, when analysing video data we can further impose smoothness
constraints to encode temporal coherence: the joint prior at time t is in this case
taken to be P (Gt, Bt|Gt−1, Bt−1) = P (Gt|Bt, Bt−1, Gt−1)P (Bt|Bt1) where we
have used an assumption that the current direction is independent of previous



gaze4, and current gaze depends only on current pose and previous gaze. The
former term, P (Gt|Bt, Bt−1, Gt−1), strikes a balance between between our belief
that people tend to look where they are going, and temporal consistency of gaze
via a mixture Gt ∼ αN (Gt−1, σ

2
G) + (1− α)N (Bt, σ

2
B).

Now we compute the joint distribution for all 64 possible gazes resulting
from possible combinations of 8 head poses and 8 directions. This posterior
distribution allows us to maintain probabilistic estimates without committing
to a defined gaze which will be advantageous for further reasoning about overall
scene behaviour. Immediately though we can see that gazes which we consider
very unlikely given our prior knowledge of human biomechanics (since the head
cannot turn beyond 90 degrees relative to the torso [20]) can be rejected in
addition to the obvious benefit that the quality of lower-level match can be
incorporated in a mathematically sound way. An illustrative example is shown
in figure 4.

4 Results

We have tested this method on various datasets (see figures 6, 7, 8, 9) and 10.
The first dataset provided us with the exemplar data for use on all the test
videos shown in this paper. In the first example in figure 6 we show significant
improvement over using head-pose or direction alone to compute gaze. The cru-
cial interaction which conveys the information that the people in the scene are
together is the frequent turning of the head to look at each other. We reliably
detect this interaction as can be seen from the images and the estimated head
angle relative to vertical. The second example is similar but in completely dif-
ferent scene. The skin histogram is recomputed for this video but the training
data remains the same. Once more the interaction implied by the head turning
to look at his companions is determined. We demonstrate the method on sports
video in figure 9 and on a standard vision sequence in figure 10. It is shown in
figure 7 how useful this technique can be in a causal-reasoning context where we
identify two people looking at one another prior to meeting. Finally we discuss
the failure mode in figure 11 which is found to be where the size of the head
falls below 20 pixels and the gaze becomes ambiguous due to the small number
of skin pixels.

5 Conclusions

In this paper we have demonstrated that a simple descriptor, readily computed
from medium-scale video, can be used robustly to estimate head pose. In order
to speed up non-parametric matching into an exemplar database and to main-
tain probabilistic estimates throughout we employed a fast pseudo-probabilistic
4 though we recognise that this may in fact be a poor assumption in some cases

since people may change their motion or pose in response to observing something
interesting while gazing around
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Fig. 6. In this video there is an interaction between the two people where the fact
they look at each other the prime indicator that they are “together”. On the first
row we estimate gaze from body direction alone, on the second row using head-pose
alone, which is improved but prone to some errors. We see that (third row) fusing the
head-pose and body-direction estimates gives the correct result.

binary search based on Principal Components. To resolve ambiguity, improve
matching and reject known implausible gaze estimates we used a simple applica-
tion of Bayes’ Rule to fuse priors on direction-of-motion and head-pose, evidence
from our exemplar-matching algorithm and priors on gaze (which we specified
in advance). We demonstrated on a number of different datasets that this gives
acceptable gaze estimation for people being tracked at a distance.

The Bayesian fusion method we have used in this work could be readily ex-
tended to include other contextual data. We used body direction in this paper
but information such as the silhouette is equally interesting. Moreover the de-
scriptor for head-pose could be extended to include information from multiple
cameras. The work reported here would be most useful in a causal reasoning
context where knowledge of where a person is looking can help solve interesting



Fig. 7. Two people meeting could potentially be identified by each person being in the
other’s gaze (in addition to other cues such as proximity), as we show in this example.

Frame 101

Frame 4 Frame 23

Frame 163

Fig. 8. Second surveillance sequence. The same training data set as used to obtain
the results above is used to infer head pose in this video without temporal smoothing.
The ground truth has been produced by a human user drawing the line-of-sight on the
images. The mean error is 5.64 degrees, the median 0.5 degrees.

Fig. 9. This example demonstrates the method in soccer footage. The skin histogram
is defined only at the start of this sequence to compensate for lighting changes, but the
exemplar database remains the same as that constructed initially and used on all the
sequences i.e. it contains no examples from this sequence.
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Fig. 10. This figure shows the method tested on a standard sequence (see
http://groups.inf.ed.ac.uk/vision/CAVIAR/). The errors are exacerbated by our dis-
cretisation of gaze (accurate to 45o) compared to the non-discretised ground truth
(computed to 10o from a hand-drawn estimate of line-of-sight which we take to be the
best-estimate a human can make from low-resolution images) and tend to be isolated
(the median error is 5.5o). In most circumstances it is more important that the signif-
icant head-turnings are identified, which they are here, as evidenced by the expanded
frames.

questions such as, “Is person A following person B?” or determine that person C
looked right because a moving object entered his field-of-view. We are currently
combining this advance with our reported work on human behaviour recognition
[22] to aid automatic reasoning in video.
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